Calcul relationnel

Skander Zannad et Judicaël Courant

2014-04-04

1 Résumé des épisodes précédents

On a vu

- (i) MCD (Entité-Association) pour la représentation conceptuelle d'un problème ;
- (ii) MLD pour transcrire le MCD en tables;
- (iii) Implantation dans une base de données SQL (MPD);
- (iv) Requêtes SQL.

2 Problème

SOL: quelle expressivité?

Autrement dit : peut-on poser n'importe quel type de requête à SQL?

Prérequis : modéliser ce problème correctement (mathématiquement).

Modélisation que nous allons utiliser : le modèle relationnel.

Deux parties :

Structure du modèle relationnel : données (tables).

Calcul relationnel : les requêtes.

3 Structure du modèle relationnel

Définition 3.0.1 (Attribut, domaine).

Ensemble att infini: ensemble d'attributs.

Pour tout attribut *a*, dom : ensemble de *constantes* (*type* de *a*). dom : union de toutes les constantes de tous les attributs.

Attributs de notre base : titre, nom, prenom, id, date, ...

Définition 3.0.2 (Schémas).

On suppose donnés:

relname : ensemble de noms de relations (disjoint de att);

sort : fonction de relname dans l'ensemble des ensembles finis d'attributs.

Alors:

Schéma relationnel : élément de relname

Schéma de base de données : ensemble fini de schémas relationnels.

Exemple pour notre base :

```
\begin{split} CINEMA &= \{ \text{ FILM, JOUE, PERSONNE, PERSONNAGE } \} \\ & \mathbf{sort}(FILM) = \{ \text{ id, titre, date, idrealisateur } \} \\ & \mathbf{sort}(PERSONNE) = \{ \text{ id, nom, prenom, datenaissance } \} \end{split}
```

Écriture FILM [id titre date idrealisateur] pour dénoter FILM et rappeler $\mathbf{sort}(FILM)$.

Définition 3.0.3 (*n*-uplets).

Soit U ensemble fini.

nuplet sur U: fonction de U dans dom.

sort du nuplet : U. Arité du nuplet : |U|.

Notation $\langle a_1 : v_1, \dots, a_k : v_k \rangle$.

nuplet sur \emptyset : $\langle \rangle$.

Exemples:

 $u = \langle id: 1, prenom: "Clint", nom: "Eastwood" \rangle$

u(prenom) = "Clint".

Notation: $u[prenom, nom] = \langle prenom : "Clint", nom : "Eastwood" \rangle$.

De manière générale : pour u de sort U et $V \subset U$, $u[V] = u_{|V}$.

Généralisation de la notion mathématique :

 $(42, 17, 6) = \langle 1 : 42, 2 : 17, 3 : 6 \rangle$

Définition 3.0.4 (Relation).

Relation sur un ensemble d'attributs U ou instance d'un schéma relationnel R[U]: ensemble fini de nuplets sur U (à valeurs dans dom).

sort de la relation : U (sort de chacun des éléments) Arité de la relation : |U| (arité de chacun des éléments)

Définition 3.0.5 (Base de données).

I instance d'un schéma de base de données S : fonction définie sur S telle que pour tout $R\in S,\, I(R)$ relation sur R.

Exemple : instances du schéma CINEMA : tables données dans les cours précédents.

4 Calcul relationnel

On fixe:

- S, schéma de base de données;
- *I*, instance de ce schéma;
- var ensemble infini de noms de variables (disjoint de dom).
- Deux valeurs : V et F destinée à représenter le vrai et le faux.

Hypothèse simplificatrice : on suppose dom ensemble fini de chaînes de caractères (par exemple toutes celles apparaissant dans la base).

Requête : formule

- portant sur les relations de la base;
- contenant des variables x_1, \ldots, x_n .

Réponse à une requête : ensemble des nuplets u sur $\{x_1, \ldots, x_n\}$ tels que le remplacement de x_1, \ldots, x_n dans la formule donne une formule vraie.

Plus précisément

Définition 4.0.6 (Termes, Atomes).

Terme t: élément de var \cup dom.

Formule atomique (ou atome) sur S: expression $R(t_1, \ldots, t_n)$ où n arité de R ou expression de la forme $t_1 = t_2$.

Ensemble des variables libres d'une formule atomique F : ensemble des v apparaissant dans F.

```
v \in \text{libre}(t_1 = t_2) \iff (v \in \text{var et } (v = t_1 \text{ ou } v = t_2))
v \in \text{libre}(R(t_1, \dots, t_n)) \iff (v \in \text{var et } \exists i \in \{1, \dots, n\} \ v = t_i)
```

Assignation de valeur/valuation pour F : nuplet sur $\mathrm{libre}(F)$ (ou un sur-ensemble de $\mathrm{libre}(F)$).

Pour $t \in \text{dom et } \nu$ une valuation, on note $\nu(t) = t$.

```
Définition 4.0.7 (Vérité d'une formule atomique).
```

Valeur de vérité d'une formule F pour I et une assignation ν :

Notation $[\![F]\!]_{I,\nu}$;

Définition Deux cas :

- $[t_1 = t_2]_{I,\nu}$ vaut V si $\nu(t_1) = \nu(t_2)$, F sinon;
- $[R(t_1,\ldots,t_n)]_{I,\nu}$ vaut V si $(\nu(t_1),\ldots,\nu(t_n))\in I(R)$, F sinon.

Définition 4.0.8 (Formule).

Une formule (ou formule bien formée sur le schéma S) du calcul relationnel est une expression obtenue par l'application des règles suivantes :

- (i) Toute formule atomique sur S est une formule;
- (ii) Pour toutes formules ϕ et ψ , $\phi \land \psi$, $\phi \lor \psi$ et $\phi \Rightarrow \psi$ sont des formules;
- (iii) Pour toute formule ϕ , $\neg \phi$ est une formule;
- (iv) Pour toute formule ϕ et toute variable x, $\exists x \ \phi$ et $\forall x \ \psi$ sont des formules.

Définition 4.0.9 (Variables libres d'une formule).

Définie par récurrence sur la taille de la formule :

- (i) libre(A) pour A atomique : déjà défini ;
- (ii) $\operatorname{libre}(\phi \wedge \psi) = \operatorname{libre}(\phi) \cup \operatorname{libre}(\psi)$;
- (iii) $\operatorname{libre}(\phi \vee \psi) = \operatorname{libre}(\phi) \cup \operatorname{libre}(\psi)$;
- (iv) $\operatorname{libre}(\phi \Rightarrow \psi) = \operatorname{libre}(\phi) \cup \operatorname{libre}(\psi)$;
- (v) libre($\neg \phi$) = libre(ϕ);
- (vi) libre($\exists x \ \phi$) = libre(ϕ) \ { x };
- (vii) libre($\forall x \ \phi$) = libre(ϕ) \ { x }.

Définition 4.0.10 (Vérité d'une formule).

Défini par récurrence sur la taille de la formule :

- (i) $[A]_{I,\nu}$ pour A atomique déjà définie;
- (ii) $\llbracket \phi \wedge \psi \rrbracket_{I,\nu}$ vaut $V \llbracket \phi \rrbracket_{I,\nu} = V$ et $\llbracket \phi \rrbracket_{I,\nu} = V$, vaut F sinon;
- (iii) $\llbracket \phi \lor \psi \rrbracket_{I,\nu}$ vaut V si $\llbracket \phi \rrbracket_{I,\nu} = V$ ou $\llbracket \phi \rrbracket_{I,\nu} = V$, vaut F sinon;
- (iv) $\llbracket \phi \Rightarrow \psi \rrbracket_{I,\nu}$ vaut V si $\llbracket \phi \rrbracket_{I,\nu} = F$ ou $\llbracket \phi \rrbracket_{I,\nu} = V$, F sinon;
- (v) $\llbracket \neg \phi \rrbracket_{I,\nu}$ vaut V si $\llbracket \phi \rrbracket_{I,\nu} = F$ et F sinon;

- (vi) $[\exists x \ \phi]_{I,\nu}$ vaut V s'il existe au moins une valeur $v \in \mathbf{dom}$ telle que $[\![\phi]\!]_{I,\nu \oplus \langle x:v\rangle} = V$, et F sinon;
- (vii) $[\![\forall x \ \phi]\!]_{I,\nu}$ vaut V si pour toute valeur $v \in \mathbf{dom}$, $[\![\phi]\!]_{I,\nu \oplus \langle x:v \rangle} = V$, et F sinon.

NB : on dit qu'une valuation ν satisfait ϕ si $[\![\phi]\!]_{I,\nu}=V$. On dit qu'une formule est satisfiable s'il existe une valuation qui la satisfasse.

Définition 4.0.11 (Requête).

Une requête est une expression de la forme

$$\{t_1,\ldots,t_n\mid\phi\}$$

où t_1,\ldots,t_n sont des termes, ϕ une formule et l'ensemble des variables apparaissant dans t_1,\ldots,t_n sont les éléments de libre (ϕ) .

La réponse à une telle requête est l'ensemble des $(\nu(t_1),\dots,\nu(t_n))$ où ν est une valuation satisfaisant ϕ .

5 Exercices

Traduire dans le calcul relationnel les requêtes suivantes :

- (i) Qui sont les réalisateurs?
- (ii) Quels sont les acteurs dont le prénom est Benedict?
- (iii) Quels sont les acteurs qui sont aussi des réalisateurs?
- (iv) Quels sont les acteurs qui ont joué au moins deux rôles dans un même film?
- (v) Quels sont les films dans lesquels le réalisateur est aussi un acteur? [ambigu]
- (vi) Quels sont les acteurs qui ont réalisé un film avant de jouer dans un autre?
- (vii) Quels sont les acteurs qui ont abandonné leur carrière d'acteurs pour se consacrer uniquement à la réalisation ? [ambigu]

6 À suivre

- Modèle relationnel : définition rigoureuse du MLD;
- Calcul relationnel : modélisation des requêtes ;
- Peut-on traduire toute requête du calcul relationnel en SQL?