Représentation des réels sur ordinateur

Skander Zannad et Judicaël Courant

2013-11-26

Plan

7	Erreurs d'arrondis : conséquences	6
6	Problèmes de précision 6.1 Problèmes liés aux arrondis	4
5	Norme IEEE 754	3
4	Virgule flottante en binaire	3
3	Virgule flottante	2
2	Virgule fixe	2
1	Réels	1

1 Réels

Mathématiquement : plein de façon de voir les réels

Une façon particulière : partie entière (un entier relatif) et une suite (infinie) de chiffres donnant la partie fractionnaire.

Peut-on représenter une suite de chiffres infinies?

Oui, par un algorithme.

Peut-on représenter toutes les suites de chiffres infinies?

Non [Turing].

Pour des besoins de calcul scientifique :

- Pas besoin de représenter tous les réels.
- On travaille avec des approximations.

— Une approximation possible : les nombres décimaux.

NB: qui dit approximation dit erreur.

Soit $x \in R$ et a une approximation de x.

Erreur absolue |x-a|

Erreur relative $\frac{|x-a|}{|x|}$ (non définie si x=0)

Besoin de nombres dont la représentation a une taille réduite :

- 1. Pour prendre une place réduite (en mémoire, sur disque, sur le réseau).
- 2. Pour calculer vite.

2 Virgule fixe

Nombres décimaux avec nombre n fixé de chiffres après la virgule.

Avantage: on comprend bien comment ça marche.

Inconvénient:

- 1. besoin de beaucoup de chiffres après la virgule (masse de l'électron : 9×10^{-31} kg, $h\approx 6\times 10^{-34}$ J.s).
- 2. garder 30 chiffres après la virgule : inutile pour manipuler un grand nombre (durée de vie moyenne de l'électron : 10^{34} s).

Erreur absolue : au plus 10^{-n} .

Mais: l'important est l'erreur *relative*.

3 Virgule flottante

Idée : notation scientifique des nombres :

- 1. Un nombre est représenté sous la forme $s \times m \times 10^e$.
- 2. s : signe (+1 ou -1).
- 3. $m \in [1, 10]$: décimal, avec n chiffres après la virgule (n fixé).
- 4. *e* : entier (relatif) appartenant à une plage de valeurs fixée.

Vocabulaire:

- 1. *s* : signe
- 2. m: mantisse
- 3. e: exposant

Exemple: calculatrice HP48SX (d'après tests personnels):

- Mantisse avec 11 chiffres après la virgule.
- Exposant : $e \in [-499, 500]$.

Permet de représenter :

- 1. de très grands nombres : jusqu'à $9,999999999999 \times 10^{499}$;
- 2. de très petits (en valeur absolue) : jusqu'à 10^{-499}
- 3. et leurs opposés : $-9.99999999999 \times 10^{499}$ et -10^{-499} ;
- 4. avec une erreur relative inférieure à 10^{-11} .

avec seulement 12 chiffres décimaux, un signe et trois chiffres pour l'exposant.

4 Virgule flottante en binaire

On peut faire de la virgule flottante en base 2. Pour cela :

- 1. Un nombre est représenté sous la forme $s \times m \times 2^e$.
- 2. s : signe (+1 ou -1).
- 3. $m \in [1, 2]$: nombre dyadique, avec n chiffres après la virgule (n fixé).
- 4. *e* : entier (relatif) appartenant à une plage de valeurs fixée.

Erreur relative au plus : 2^{-n} pour les réels représentables.

Nombre décimal : de la forme $n/10^k$ où $n \in \mathbb{Z}$, $k \in \mathbb{N}$.

Nombre dyadique : de la forme $n/2^k$ où $n \in \mathbb{Z}$, $k \in \mathbb{N}$.

En décimal le nombre $12345/10^3$ s'écrit 12, 345.

En binaire, le nombre 10101011/10 $\frac{101}{101}$ s'écrit 101,01011. Il vaut $171/2^5 = 5,34375$. Autre façon de calculer :

$$\underline{101,01011} = 5 + \frac{1}{2^2} + \frac{1}{2^4} + \frac{1}{2^5}$$

5 Norme IEEE 754

- 1. Norme utilisée dans tous les ordinateurs pour les nombres à virgule flottante.
- 2. Plusieurs versions (simple précision, double précision, double précision étendue).
- 3. On ne parlera ici que de la double précision (la plus répandue).

Flottants double précisions : représentés sur 64 bits :

- 1. 1 bit pour le signe (0 pour +, 1 pour -).
- 2. 11 bits pour l'exposant décalé e (exposant plus 1023).
- 3. 52 bits pour les 52 chiffres après la virgule de la mantisse (inutile de garder le premier bit de m : c'est 1).

Interprétation du flottant $se_{10} \dots e_0 m_1 \dots m_{52}$:

Si $e_{10} \dots e_0 \in [1, 2047]$, nombre normalisé :

$$s \times \underline{1, m_1 \dots m_{52}} \times 2^{\left(-1023 + e_{10} \dots e_0\right)} = s \times \left(1 + \sum_{k=1}^{52} \frac{m_k}{2^k}\right) \times 2^{\left(-1023 + \sum_{k=0}^{10} e_k 2^k\right)}$$

Si
$$e = 0$$
 et m_1, \dots, m_{52} tous nuls : 0 (deux versions : $+0$ et -0).

Si
$$e = 0$$
 et m_1, \ldots, m_{52} non tous nuls : nombre dénormalisé :

$$s \times 0, m_1 \dots m_{52} \times 2^{-1022} = s \times \left(\sum_{k=1}^{52} \frac{m_k}{2^k}\right) \times 2^{-1022}$$

Si
$$e = 2047$$
 et m_1, \ldots, m_{52} tous nuls : $s \infty \ (+\infty \ \text{ou} \ -\infty)$.

Si
$$e = 2047$$
 et m_1, \ldots, m_{52} non tous nuls : NaN .

Nombres normalisés : permettent de représenter de façon précise les réels de $[-M, -m] \cup [m, M]$ avec

$$m \approx 2^{-1022} \approx 2 \times 10^{-308}$$

et $M \approx 2^{1024} \approx 1.8 \times 10^{308}$

L'essentiel à savoir :

- 1. Le principe de la représentation des nombres normalisés (vu).
- 2. Les problèmes de précision : origine.
- 3. Leurs conséquences.

6 Problèmes de précision

Différents types :

- 1. Problèmes liés aux arrondis des calculs
- 2. Problèmes liés à la représentation binaire.

6.1 Problèmes liés aux arrondis

En décimal: $1,23 \times 1,56 = 1,9188$

Pour garder deux chiffres après la virgule : arrondir Pour l'addition : $1,23 \times 10^3 + 4,56 \times 10^0 = 1,23456 \times 10^3$ Pour garder deux chiffres après la virgule : arrondir

6.2 Problèmes liés à la représentation binaire

En fait : problèmes liés au passage décimal/binaire. Exemple en Python:

???

6.3 Origine du problème

Théorème:

- 1. Pour tout n, 1/n est un nombre décimal si et seulement si n est de la forme $2^{\alpha}5^{\beta}$ où $(\alpha, \beta) \in \mathbb{N} \times \mathbb{N}$.
- 2. Pour tout n, 1/n est un nombre dyadique si et seulement si n est de la forme 2^{α} où $\alpha \in \mathbb{N}$.

Conséquence : $\frac{1}{10}$ n'est pas un nombre dyadique.

1/10 = 0,0001100110011001100110011...

Le flottant (arrondi par défaut) représentant $\frac{1}{10}$ est donc

L'arrondi au plus près x vaut

Qui est la représentation exacte de

 $0.\,10000000000000000055511151231257827021181583404541015625$

De même le flottant y (arrondi au plus proche) représentant $\frac{2}{10}$ est

Somme x + y:

Arrondi au flottant le plus proche :

Soit

 $0.\,3000000000000000444089209850062616169452667236328125$

Quand on effectue le calcul 0.1 + 0.2 - 0.3:

- 1. nouvelles erreurs d'arrondi
- 2. «négligeables» devant 0, 1
- 3. mais pas devant 4×10^{-17} ...
- 4. d'où le résultat final de l'ordre de 6×10^{-17} .

7 Erreurs d'arrondis : conséquences

- 1. Un test de la forme x == 0 ou x == y pour des flottants n'a aucun sens!
- 2. Seule possibilité parfois raisonnable : test de «petitesse». Par exemple : abs(x) < epsilon avec epsilon = 1e-6.
- 3. Quelle valeur de ϵ choisir? Pas de réponse universelle, à étudier en fonction du problème. . .

De même, se méfier des test x < y ou x < = y.

Exemple : construisons une équation du second degré.

Oups...

```
>>> a*r1**2 + b*r1 + c
2.220446049250313e-16
>>> a*r2**2 + b*r2 + c
2.220446049250313e-16
```

>>> r1 = 1 + 1.2e-16

On peut aussi trouver des cas où Delta est nul avec le polynôme qui s'annule au moins sur deux flottants, dont l'un n'est pas supposé être une racine...