Représentation des nombres

Skander Zannad et Judicaël Courant

2013-11-22

Plan

1	Bas	e de numération	2
	1.1	Rappel de CP : la base dix	2
	1.2	Numération de position	
	1.3	Pourquoi dix?	2
	1.4	Autres possibilités	3
	1.5	Base huit (octale)	3
	1.6	Base seize (hexadécimale)	4
	1.7	Base deux	6
		1.7.1 Intérêts du binaire	6
		1.7.2 Écriture d'un naturel p en binaire	6
		1.7.3 Calcul d'entier représenté en binaire	6
		1.7.4 Remarques	7
2	Rep	résentation des entiers sur ordinateur	7
	2.1	Cadre	7
	2.2		
	2.3	Entiers relatifs	8
			8
		2.3.2 Complément à deux	8
		2.3.3 Calcul de la représentation en complément à deux	
		2.3.4 Soustraction	
	2.4	Dans les langages de programmation	

1 Base de numération

1.1 Rappel de CP : la base dix

Chiffre : symbole utilisé pour représenter certains entiers.

Les chiffres «usuels»: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Rôle particulier du nombre dix :

- Plus petit nombre non représentable par un chiffre. chiffre pour le représenter.
- Pour compter des objets en grand nombre, on les regroupe par paquets de dix.

Exemple: Pour compter ||||||||||||, on obtient

Deux paquets (deux dizaines), reste quatre unités.

Quand il y a trop de dizaines, on regroupe les dizaines par paquets de dix (centaines), les centaines par paquets de dix (milliers), etc.

1.2 Numération de position

- Décomposition d'un entier en dizaines, centaines, milliers, etc.
- Essentiel : strictement moins de dix éléments de chaque type de paquet.
- Regroupement des paquets par type, comptage par type, représentation par un chiffre pour chaque type.
- Écriture : tous les chiffres à la suite.
- À gauche, les *chiffres de poids fort* (gros paquets).
- À droite, les *chiffres* de poids faible.

Ainsi 2735 représente deux milliers plus sept centaines plus trois dizaines plus cinqunités.

De manière générale : $a_n a_{n-1} \dots a_1 a_{0_{10}} = \sum_{k=0}^n a_k B^k$, où B vaut dix.

1.3 Pourquoi dix?

Pourquoi regrouper par dix pas plutôt par deux? ou trois? ou six? ou huit?

- Raison anthropomorphique (dix doigts) et poids de l'histoire.
- À peu près aucune raison mathématique.

1.4 Autres possibilités

- Deux : Amérique du Sud et Océanie.

- Cinq: Afrique, Romains et Maya (partiellement).

- Six : Papouasie Nouvelle-Guinée.

Huit : certains dialectes amérindiens (Pame, Mexique; Yuki, Californie), proposition de Charles XII de Suède.

- Douze : Népal, Europe.

- Vingt: Bhoutan, Aztèques, Maya, Gaulois (?), Basques (?).

- Soixante : Babyloniens, Indiens et Arabes (trigo)

(source: Wikipédia, article Numération)

1.5 Base huit (octale)

 Besoin de huit symboles pour représenter les huit chiffres (représentant les nombres de zéro inclus à huit exclu). On prendra 0, ..., 7.

– Pour compter, on regroupe les unités par huitaine puis par huitaines de huitaines,

...

 Même principe pour noter les nombres : <u>2735</u>₈ représente cinq unités plus trois huitaines plus sept huitaines de huitaines, plus deux huitaines de huitaines de huitaines (total 1501).

De manière générale

$$\underline{a_n a_{n-1} \dots a_1 a_0}_8 = \sum_{k=0}^n a_k B^k$$
 où B vaut huit

Comptons en octal:

$\underline{0}_8 = 0$	$10_8 = 8$	$20_{8} = 16$	$30_8 = 24$	$100_8 = 64$
$1_8 = 1$	$11_8 = 9$	$21_8 = 17$	$40_8 = 32$	$200_8 = 128$
$2_{8} = 2$	$12_{8} = 10$	$22_{8} = 18$	$50_8 = 40$	$1000_8 = 512$
$3_{8} = 3$	$13_8 = 11$	$23_8 = 19$	$60_8 = 48$	$10000_8 = 4096$
$\underline{4}_{8} = 4$	$14_8 = 12$	$24_8 = 20$	$70_8 = 56$	$100000_8 = 32768$
$5_{8} = 5$	$15_8 = 13$	$25_8 = 21$		
$6_{8} = 6$	$16_8 = 14$	$26_8 = 22$		
$7_{8} = 7$	$17_8 = 15$	$27_8 = 23$		

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	10
2	2	3	4	5	6	7	10	11
3	3	4	5	6	7	10	11	12
4	4	5	6	7	10	11	12	13
5	5	6	7	10	11	12	13	14
6	6	7	10	11	12	13	14	15
7	7	10	11	12	13	14	15	16
				4 4			_	-

Table d'addition en octal

*	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	10	12	14	16
3	0	3	6	11	14	17	22	25
4	0	4	10	14	20	24	30	34
5	0	5	12	17	24	31	36	43
6	0	6	14	22	30	36	44	52
7	0	7	16	25	34	43	52	61

Table de multiplication en octal

Comment faire une addition de nombres à plusieurs chiffres? Exactement comme en base 10, mais en utilisant la table d'addition de la base 8. Pour la multiplication : aussi.

1.6 Base seize (hexadécimale)

On manque de chiffres pour représenter les nombres de zéro inclus à seize exclu (il en manque six).

On rajoute de nouveaux chiffres:

a dix

b onze

c douze

d treize

e quatorze

f quinze

$ \underline{0}_{16} = 0 \\ \underline{1}_{16} = 1 $	$\frac{10}{16} = 16$ $\frac{11}{16} = 17$		$ \underline{30}_{16} = 48 $ $ \underline{40}_{16} = 64 $	$\frac{100_{16} = 256}{200_{16} = 512}$
÷	:	÷	:	$\frac{1000_{16}}{10000_{16}} = 4096$ $\frac{10000_{16}}{10000_{16}} = 65536$
$9_{16} = 9$	$19_{16} = 25$	$29_{16} = 41$	$90_{16} = 144$	10 000 16 - 0000
$\underline{\mathbf{a}}_{16} = 10$	$\underline{\mathtt{1a}}_{16} = 26$	$2a_{16} = 42$	$\underline{a0}_{16} = 160$	
$\underline{b}_{16} = 11$	$1b_{16} = 27$	$2b_{16} = 43$	$\underline{b0}_{16} = 176$	
$\underline{c}_{16} = 12$	$1c_{16} = 28$	$2c_{16} = 44$	$\underline{c0}_{16} = 192$	
$\underline{d}_{16} = 13$	$1d_{16} = 29$	$2d_{16} = 45$	$\underline{d0}_{16} = 208$	
$\underline{\mathbf{e}}_{16} = 14$	$1e_{16} = 30$	$2e_{16} = 46$	$\underline{e0}_{16} = 224$	

 $\underline{\text{f0}}_{16} = 240$

 $\underline{\mathbf{f}}_{16} = 15$ $\underline{\mathbf{1f}}_{16} = 31$ $\underline{\mathbf{2f}}_{16} = 47$

+	- 0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
_	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
1	. 1	2	3	4	5	6	7	8	9	A	В	C	D	E	F	10
2	2	3	4	5	6	7	8	9	A	В	C	D	E	F	10	11
3	3	4	5	6	7	8	9	A	В	C	D	E	F	10	11	12
4	4	5	6	7	8	9	A	В	C	D	E	F	10	11	12	13
5	5	6	7	8	9	A	В	C	D	E	F	10	11	12	13	14
6	6	7	8	9	A	В	C	D	E	F	10	11	12	13	14	15
7	7	8	9	A	В	C	D	E	F	10	11	12	13	14	15	16
8	8 1	9	A	В	C	D	E	F	10	11	12	13	14	15	16	17
9	9	A	В	C	D	E	F	10	11	12	13	14	15	16	17	18
A	. A	В	C	D	E	F	10	11	12	13	14	15	16	17	18	19
E	B	C	D	E	F	10	11	12	13	14	15	16	17	18	19	1A
0	. c	D	E	F	10	11	12	13	14	15	16	17	18	19	1A	1B
Ε) D	E	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C
E	E	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D
F	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E

Table d'addition en hexadécimal

*	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
2	0	2	4	6	8	A	C	E	10	12	14	16	18	1 A	1C	1E
3	0	3	6	9	C	F	12	15	18	1B	1E	21	24	27	2A	2D
4	0	4	8	C	10	14	18	1C	20	24	28	2C	30	34	38	3C
5	0	5	A	F	14	19	1E	23	28	2D	32	37	3C	41	46	4B
6	0	6	C	12	18	1E	24	2A	30	36	3C	42	48	4E	54	5A
7	0	7	E	15	1C	23	2A	31	38	3F	46	4D	54	5B	62	69
8	0	8	10	18	20	28	30	38	40	48	50	58	60	68	70	78
9	0	9	12	1B	24	2D	36	3F	48	51	5A	63	6C	75	7E	87
A	0	A	14	1E	28	32	3C	46	50	5A	64	6E	78	82	8C	96
В	0	В	16	21	2C	37	42	4D	58	63	6E	79	84	8F	9A	A5
C	0	C	18	24	30	3C	48	54	60	6C	78	84	90	9C	A8	B4
D	0	D	1A	27	34	41	4E	5B	68	75	82	8F	9C	A9	B6	C3
E	0	Ε	1C	2A	38	46	54	62	70	7E	8C	9A	A8	B6	C4	D2
F	0	F	1E	2D	3C	4B	5A	69	78	87	96	A5	B4	C3	D2	E1

Table de multiplication en hexadécimal

1.7 Base deux

	+	0	1							
	0	0	1							
	1	1	10							
Table d'addition en binaire										

* 0 1 0 0 0 1 0 1

Table de multiplication en binaire

1.7.1 Intérêts du binaire

- 1. Facilement représentable par un dispositif mécanique/électrique/électronique/optique/électromagnétique...
- 2. Tables d'opérations très simples, facilement calculable par un dispositif mécanique/électrique/électronique.

Système utilisé pour représenter les nombres en interne dans un ordinateur.

1.7.2 Écriture d'un naturel p en binaire

- 1. Algorithme par divisions successives : voir livre.
- 2. Calculer 2^k pour $k=0,\ldots$ jusqu'à avoir $2^k>p$. Alors p s'écrit sur k bits et le bit de poids fort est 1. Le reste des bits est donné par la représentation en binaire de $p-2^{k-1}$.

1.7.3 Calcul d'entier représenté en binaire

Calcul de l'entier p représenté par une suite de bits $\underline{a_n a_{n-1} \dots a_1 a_{0_2}}$: calculer $\sum_{k=0}^n a_k 2^k$ (voir livre).

1.7.4 Remarques

- 1. S'ils sont bien mis en œuvre, ces algorithmes de conversion demandent un temps de calcul en $\Theta(n^2)$ pour un nombre de n chiffres (binaires ou décimaux), soit en $\Theta((\log p)^2)$.
- 2. Il existe des algorithmes plus efficaces. Meilleure complexité connue : complexité d'une multiplication de nombres de n chiffres, soit $O(n \log n \log \log n)$ [Knuth].
- 3. Peu importe la base dans laquelle vous faites vos calculs, ces algorithmes permettent de convertir entre la base 2 et votre base habituelle.

2 Représentation des entiers sur ordinateur

2.1 Cadre

Sur un ordinateur récent :

- 1. mots-machine de 64 bits (8 octets).
- 2. opérations d'addition/multiplication d'entiers internes au processeur : sur 64 bits.

De manière générale, on s'intéressera au fonctionnement sur des ordinateurs travaillant sur des mots de n bits ($n \geq 2$), mais pour les exemples, on prendra systématiquement n=16.

2.2 Somme de naturels

Dans un processeur n bits :

- 1. Un registre du processeur a n bits et peut représenter tout entier de $[0, 2^n]$.
- 2. Lorsqu'on effectue l'addition de deux registres r_1 et r_2 pour stocker le résultat dans r_3 , le registre fait n bits : s'il y a une retenue, elle est perdue. 1

Exemple : après addition de $\underline{11110000111110000}_2$ et $\underline{00110011001110011}_2$ sur $\underline{16}$ bits, registre résultat : $\underline{0010010001100011}_2$.

Troncature d'un entier p à ses n bits de poids faibles : valeur du reste de la division de p par 2^n (noté $p \% 2^n$).

Définitions :

- 1. Soit $p \in \mathbb{N}$. p représentable comme entier non signé sur n bits si $p \in [0, 2^n]$.
- 2. Représentation de p comme entier non signé sur n bits : suite des n chiffres de son écriture en binaire.
- 3. Abus de notation : on identifie $[0, 2^n]$ et les représentations sur n bits.
- 4. Soit $(p,q) \in [0,2^n]^2$. somme (non signée) de p et q sur n bits : (p+q) % 2^n , notée $p+_n q$ (notation non canonique).
- 1. En fait une trace en est généralement gardée dans un autre registre du processeur.

Remarques pour $(p,q) \in [0,2^n]^2$:

- 1. $p +_m q \equiv p + q [2^n]$.
- 2. $p +_n q = p + q \text{ si } p + q < 2^n$.
- 3. $p +_n q = p + q 2^n \text{ si } p + q \ge 2^n$.

2.3 Entiers relatifs

2.3.1 Avec signe et valeur absolue

Première possibilité : n-1 bits pour la valeur absolue et 1 bit pour le signe, par ex. :

- on représente -4 par $1000\,0000\,0000\,0100_2$;
- on représente 4 par 0000 0000 0000 0100₂.

Inconvénients:

- 1. Deux représentations pour zéro $(1000\,0000\,0000\,0000_{2})$ et $0000\,0000\,0000\,0000_{2})$.
- 2. Plus compliqué à additionner que les entiers naturels.

Représentation quasiment jamais utilisée pour les nombres entiers d'un processeur.

2.3.2 Complément à deux

Idée géniale :

- 1. L'addition d'entiers naturels sur le processeur n'est pas correcte mais l'est modulo 2^n :
- 2. pour tout $p \in \mathbb{Z}$, $p \% 2^n \in [0, 2^n[]$;
- 3. donc $p \% 2^n$ représentable sur n bits ;
- 4. l'addition de ces entiers relatifs sera correcte modulo 2^n .

Exemples:

- 2. 3 est codé par $3\%2^{16} = 3 = 0000\,0000\,0000\,0011_2$.
- 3. La somme obtenue par le processeur est

- 4. -4 est codé par $-4\%2^{16} = 65532 = 1111111111111111100_2$.
- 5. 6 est codé par $6 \% 2^{16} = 6 = \underline{0000 \, 0000 \, 0000 \, 0110_2}$.
- 6. La somme obtenue par le processeur est

$$0000\,0000\,0000\,0010_2 = 2 = 2\%65536$$

Définitions:

- 1. Soit $p \in [0, 2^n[$. Complément à deux de p sur n bits : $(-p) \% 2^n$, noté $c_n(p)$ (non canonique).
- 2. Soit $p \in \mathbb{Z}$. p est représentable comme entier signé sur n bits si $p \in [-2^{n-1}, 2^{n-1}]$.
- 3. Soit $p \in [-2^{n-1}, 2^{n-1}]$. Représentation en complément à deux de $p: p \% 2^n$, notée $r_n(p)$ (non canonique).

Remarques:

- 1. c_n involution ² de $[0, 2^n]$.
- 2. Soit $p \in [0, 2^n]$. $c_n(p) = 2^n p$ si $p \neq 0$, 0 si p = 0.
- 3. r_n bijection de $[-2^{n-1}, 2^{n-1}]$ sur $[0, 2^n]$.
- 4. $\forall p \in [-2^{n-1} + 1, 2^{n-1}]$ $r_n(-p) = c_n(r_n(p))$.
- 5. Pour tout $(p,q) \in [-2^{n-1}, 2^{n-1}]^2$ on a $r_n^{-1}(r_n(p) +_n r_n(q)) \equiv p + q$ [2ⁿ].
- 6. On a l'égalité si $p+q \in [-2^{n-1}, 2^{n-1}]$ (en particulier si p et q de signes différents).
- 7. Le bit de poids fort de $r_n(p)$ vaut 1 si et seulement si p < 0.

Intérêt du complément à deux : Pour calculer une addition, on utilise exactement les mêmes circuits électroniques que pour des entiers non signés !

2.3.3 Calcul de la représentation en complément à deux

Définition Complément à un sur n bits de $\underline{a_{n-1}\dots a_{0_2}}:\underline{b_{n-1}\dots b_{0_2}}$ où $b_k=1-a_k$ pour $k\in \llbracket 0,n
rbracket$. On note $c'_n(p)$ cette valeur.

Proposition Pour tout $p \in [0, 2^n]$,

$$p + c'_n(p) = \sum_{k \in [0,n]} 2^k = 2^n - 1$$

Conséquence Pour tout p entier non signé sur n bits,

$$c_n(p) = c'_n(p) +_n 1$$

Conséquence (bis) Pour tout $p \in \llbracket -2^{n-1} + 1, 2^{n-1} \llbracket$

$$r_n(-p) = c'_n(r_n(p)) +_n 1$$

Exemple (sur 16 bits):

- 1. Représentation de 5 en tant qu'entier non signé ?
- 2. Complément à un de 5?
- 3. Complément à deux de $5\,?$
- 4. Représentation de -5 sur 16 bits?
- 5. Calcul de l'opposé de l'entier signé $\underline{1111}\,\underline{1111}\,\underline{1111}\,\underline{1000}\,?$
- 6. Que vaut l'entier signé <u>1111 1111 1111 1000</u>?
- 2. Bijection d'un ensemble sur lui-même qui est sa propre bijection réciproque.

2.3.4 Soustraction

Soit
$$(p,q) \in [2^{n-1}-1, 2^{n-1}]$$
.

Définition Différence sur n bits de p et q:(p-q) % 2^n , notée $p-_n q$ (non canonique).

Proposition $p -_n q = p +_n c_n(q)$.

- 1. Complément à deux facile à calculer.
- 2. Addition/Soustraction: utilisation du même circuit!

2.4 Dans les langages de programmation

Dans de nombreux langages (C, Java, ...):

Entiers du langage = Entiers sur n bits

Dans ces langages, sur une machine 64 bits, 4 * 2**62 vaut 0.

Dans quelques langages:

- 1. Les entiers ne sont pas les entiers machines. Plusieurs représentation possibles. Possibilités classiques : tableau dont les éléments sont des octets/mots machines/chiffres dans une base *B* (avec *B* puissance de 2 ou 10).
- 2. Des fonctions internes au langage prennent soin d'effectuer les opérations correctement (en utilisant le fait que le processeur sait calculer sur n bits)

Python est dans ce cas.

3 Octal et hexadécimal en informatique

- 1. Représenter des données par une succession de chiffres binaires est bien adapté à l'utilisation de l'électronique pour construire des ordinateurs.
- 2. C'est également bien adapté au calcul sur les entiers.

Exemple de représentation par du binaire :

- Une adresse IPv6 est une suite de 128 bits. Exemple d'adresse :

- Une adresse IPv4 est une suite de 32 bits. Exemple :

1000000110101111100001111100001011

Ce n'est pas très pratique à manipuler...

Comment trouver une représentation plus simple à manipuler?

Deux possibilités :

- 1. Considérer ces suites de bits comme des entiers binaires et convertir en décimal (difficile à faire de tête)
- 2. Grouper ces suites de bits, par exemple par octet, remplacer chaque octet par sa représentation décimale.

Adresses IPv4: 2e solution. Sur l'adresse précédente: 129.175.15.11

2º solution : pas pratique si la suite de bits représente un entier (difficile ensuite de calculer sur la représentation).

Autre solution:

- 1. Grouper les chiffres binaires par 4 (en partant de la droite)
- 2. Remplacer chaque groupement par le chiffre hexadécimal correspondant.

Avantages:

- 1. Facile à faire à la main et même de tête.
- 2. A du sens mathématiquement : le nombre hexadécimal obtenu a la même valeur que le nombre binaire de départ.

Solution prise pour les adresses IPv6.

Exemples:

- traduire en hexadécimal le nombre 11 0101 0010 1010 11102
- traduire en binaire le nombre 90f5e56712₁₆

Pour l'octal : même principe mais en groupant par 3.

- 1. Binaire, octal et hexadécimal sont très utilisés en informatique.
- 2. En Python, notations autorisées:

>>> 0b101010

42

>>> 0o52

42

>>> 0x2a

42

 Écriture d'un entier n en décimal, binaire, octal ou hexadécimal : str(n), bin(n),oct(n), hex(n).

Danger, ancienne notation encore autorisée en Python 2 mais à ne plus utiliser :

>>> 052

42

En python 3:

```
>>> 052
File "<stdin>", line 1
052
```

SyntaxError: invalid token